Douglas Academy Mathematics Department

National 5 Mathematics (S5/6)

A Guide for Parents

Classes

In S5/6 this session we have 2 classes working towards National 5 Mathematics. Both classes are 'mixed ability' with pupils who sat N4 Maths last session together with N5 repeats.

Textbook, Notes \& Homework

All classes use the TeeJay National 5 textbook supplemented by other resources. Our N5 teachers typically go through notes and examples which pupils copy into their jotter before attempting an exercise from the textbook.

S5/6 classes have 6 periods of new work to get through each week. Teachers will set homework on a daily basis and pupils require to make their best effort to complete this. Some teachers may also issue Ink Exercises as well. Typically a week would be given to complete these.

Pupil progress in class is monitored through the use of multiple choice check-ups for each topic in the N5 course.

Additional Support

The Mathematics Department run twice weekly lunchtime drop in sessions open to all pupils from S3-S6. The drop in sessions will take place on Wednesday \& Thursday lunchtimes from 1:00 to 1:30pm in Room 5. They run from early September until the SQA exams in May. All classes are repeatedly made aware of these sessions.

We also offer Supported Study in the $4 / 5$ weeks prior to the January Prelim and the May exam. Supported Study is after school and pupils 'sign up' in advance.

Assessments \& Preparation Resources

The final grade for N5 Mathematics is based solely on the final exam in May which consists of 2 papers:

Paper 1 (Non-calculator)	1 hour 15 minutes	50 marks
Paper 2 (Calculator)	1 hour 50 minutes	60 marks

UASPs

These are no longer mandatory for National 5 Mathematics.
All N5 repeat candidates will sit the final exam in May.
For pupils entering the session with an N4 pass we will assess their progress after the January Prelim. Pupils will then be offered 2 options.

Option 1 Complete the course and prepare for the May exam.
Option 2* Complete the course and sit the 3 UASPs
*Parents will be consulted before any such decision is taken.

October Extended Unit Test - this will cover work covered up to that point. The October Test will be non-calculator.

January Prelim - this covers all work completed to that point. 3 Practice Prelims and at least 5 past papers will be issued in advance. Pupils may also be issued with a revision schedule to keep them on track. When pupils get their scripts returned they will be issued with a summary sheet detailing performance for each question and identifying next steps. (The summary sheet for the January 2017
Prelim is attached for information.)
May Exam - this covers the whole course. 6 Practice Exams and at least 5 Past Papers will be issued in advance. Pupils may well also be issued with a revision schedule to keep them on track.

Useful Revision Websites

Notes and Examples
Maths Revision: www.mathsrevision.com
National 5 Maths: www.national5maths.co.uk

Video Past Papers and Lessons

Larbert High Youtube Lessons:
https://www.youtube.com/channel/UCeJ1pRPUBkh5S5mzh5UvYfg/feed
DLB Maths Youtube Past Paper Videos:
https://www.youtube.com/channel/UCXt3X1kIJoAMovD7ngorKQQ

Study Skills

To keep stress levels to a minimum at this time we recommend that all pupils are organised and have a clear revision plan to use their time effectively across all subjects. The following structure should help with this process:

- Ensure all pupils have access to a quiet space/area to study at home without the distractions of social media etc.
- Pupils should have planners up to date including dates and times of each exam.
- Pupils should have a clear plan of how and when they study for each subject. It is not recommended that pupils spend full days on one particular subject and should instead aim to cover around 2 subjects.
Pupils should be flexible with this structure e.g. if struggling and find studying a particular subject is ineffective at that point, switch to another subject until in a better headspace.
- Ensure pupils take frequent short breaks. We work best and most efficiently in 50 minutes intervals. When taking breaks leave the working space even for 5 minutes to allow the brain to rest. Fresh air and exercise should also be encouraged even if just a walk.
- Studying for Maths.

Pupils should identify which formulae are provided in the formula sheet at the front of the exam and create a list of those which need to be learned.
Pupils should initially be working through specimen papers with notes to produce good quality solutions, asking for help as required. Once having worked through the first few papers with notes pupils should start to recognise and become familiar with the exam style questions and then less reliant on notes as completing specimen papers.

It is important to note that this is a stressful time and it is easy for pupils to develop a fixed mindset when they struggle to see progress. This is only natural and pupils should be made aware that the feeling of being overwhelmed is simply an indication that they value the importance of their studies. At these times pupils should be encouraged to talk about their feelings, break down problems and work through issues one at a time. Assure pupils that hard work and effort is the key to success.
Pupils should adopt a growth mindset, where instead of thinking 'I can't do this' they should take the view of 'I can't do this YET'. This more positive approach to learning combined with hard work provides a better chance of achieving success.

Appendix \quad National 5 (S5) Mathematics (TJ Nat. 5 Textbook)

Session Plan (2019-2020) Updated June 2019

Chapter

Start Date

EXPRESSIONS \& FORMULAE

4. Algebraic Operations
$3^{\text {rd }}$ June
5. Circles - Arcs \& Sectors $10^{\text {th }}$ June
6. Surds \& Indices $17^{\text {th }}$ June

Volumes Of Solids (TJ N5 Supplementary Booklet) $15^{\text {th }}$ Aug
3. Fractions $26^{\text {th }}$ Aug
7. Factorising $2^{\text {nd }}$ Sep
9. Algebraic Fractions $9^{\text {th }}$ Sep
6. Linear Relationships $16^{\text {th }}$ Sep

The Expressions \& Formulae UASP will be completed on an 'Outcome by outcome' basis this session TBC

RELATIONSHIPS

| 5. Pythagoras Theorem | $26^{\text {th }}$ Sep |
| :--- | :--- | :--- |
| 4. Simultaneous Equations | $3^{\text {rd }}$ Oct |

OCTOBER TEST w/b Mon $7^{\text {th }}$ Oct.

10. Changing The Subject
$21^{\text {st }}$ Oct
11. Functions \& Graphs
$24^{\text {th }}$ Oct
12. Quadratic Functions 1
$29^{\text {th }}$ Oct
13. Trigonometric Graphs
$11^{\text {th }} \mathrm{Nov}$
14. Quadratic Functions 2
$20^{\text {th }} \mathrm{Nov}$
15. Trigonometric Equations
$27^{\text {th }} \mathrm{Nov}$

Exam revision	
PRELIMS	Tue 7 ${ }^{\text {th }}$ JANUARY - Mon 20 ${ }^{\text {th }}$ JANUARY
$\underline{\text { Chapter }}$	$\underline{\text { Start Date }}$
Similar Figures (TJ N5 Supplementary Booklet)	$21^{\text {st }}$ Jan
The Circle (TJ N5 Supplementary Booklet)	$28^{\text {th }}$ Jan

The Relationships UASP will be completed on an 'Outcome by outcome' basis this session TBC

APPLICATIONS

2. Further calculations involving percentages
$3^{\text {rd }} \mathrm{Feb}$
3. Trigonometric formulae
$13^{\text {th }}$ Feb
4. Statistics
$24^{\text {th }}$ Feb
5. Vectors
$2^{\text {nd }}$ Mar
6. Scattergraphs
$11^{\text {th }}$ Mar

The Applications UASP will be completed on an 'Outcome by outcome' basis this session TBC

Exam revision $\mathbf{1 6}^{\text {th }}$ MARCH

EASTER HOLIDAY is Mon $6^{\text {th }}$ April - Fri $17^{\text {th }}$ April inclusive

SQA N5 Mathematics Exam 2020
Tuesday $12{ }^{\text {th }}$ May Paper 1 (Non-calculator) $\quad 9.00-10.15$
Paper 2 (Calculator) $10.35-\mathbf{1 2 . 2 5}$

S5/6 NATIONAL 5 JANUARY 2017

PRELIM SUMMARY SHEET

Name
Class

PAPER 1

	TOPIC	$\begin{array}{\|l\|} \hline \mathbf{P O} \\ \text { SS } \\ \text { IB } \\ \text { LE } \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{A C} \\ \mathbf{T U} \\ \mathbf{A L} \end{array}$	SQA PAPERS Yr Paper Q	SPECIMEN PRELIM PAPERS A-F Paper Q	TEXTBOOK $\begin{array}{lll} \mathbf{P g} & \mathbf{E x} & \mathbf{Q} \end{array}$
1	Fractions - dividing involving mixed numbers	2		Spec. P1 Q1	$\begin{array}{cccc} \hline \text { A } & \text { P1 } & \text { Q1 } \\ \text { C } & \text { P1 } & \text { Q3 } \\ \hline \end{array}$	
2(a) (b)	Indices - multiply out brackets and simplify Evaluate using fractional indices	2			$\begin{array}{lll} \hline \mathrm{C} & \mathrm{P} 1 & \mathrm{Q} 5 \\ \mathrm{D} & \mathrm{P} 1 & \mathrm{Q} 9 \end{array}$	
3	Find the gradient using 2 points	2			$\begin{array}{lll} \hline \text { A } & \text { P1 } & \text { Q2 } \\ \text { D } & \text { P1 } & \text { Q5a } \end{array}$	
4	Change the subject of a formula	3		2014 P2 Q11 Spec. P1 Q8		
5(a) (b)	Surds - simplification involving like terms Surds - rationalising denominator	$\begin{array}{\|l} \hline 3 \\ 3 \end{array}$		$\begin{aligned} & 2014 \text { P1 Q8 } \\ & \text { Spec. P1 Q5 } \end{aligned}$		
6(a) (b)	$\begin{aligned} & \text { Functions - evaluate } f(-2) \\ & \text { Functions - solve equation } \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \\ 3 \end{array}$		Spec. P1 Q4	A P1 Q13 B P1 Q9 D P1 Q10	
7	Solve equation using algebraic fractions	3			D P1 Q6c	p94 Ex9.3 Q10
8	Perimeter calculation involving arc length (noncalculator)	3			$\begin{array}{\|lll\|} \hline \text { B } & \text { P2 Q9 } \\ \text { E } & \text { P2 Q12a } \\ \hline \end{array}$	
9	Equation of a line given gradient and coordinate in the form $a x+b y=c$	3		2014 P1 Q11		$\begin{aligned} & \hline \text { P54 Ex6.3 Q4 } \\ & \text { P61 Ex6.7 Q3 } \end{aligned}$
10(a) (b)	Factorising - difference of two squares Apply factorisation to numbers	$\begin{array}{\|l} \hline 1 \\ 2 \end{array}$			$\begin{array}{lll} \hline \text { A } & \text { P1 } & \text { Q4a } \\ \text { E } & \text { P1 } & \text { Q7b } \end{array}$	

11	Algebraic fraction - subtraction	3		Spec. P1 Q11 2014 P2 Q9		
12	Trig graph - sketch y $=a \sin b \mathrm{x}$	3		2014 P1 Q10	E P1 Q5	
	PAPER 1 TOTAL	$\mathbf{4 0}$				

PAPER 2

	TOPIC	$\begin{array}{\|l\|} \hline \text { PO } \\ \text { SS } \\ \text { IB } \\ \text { LE } \end{array}$	$\begin{aligned} & \hline \mathbf{A C} \\ & \mathbf{T U} \\ & \mathbf{A L} \end{aligned}$	SQA PAPERS Specimen Yr Paper Q	Specimen Papers A-F Paper Q C	$\begin{aligned} & \text { TEXTBOOK } \\ & \text { Pg Ex } Q \end{aligned}$
1	Algebraic fraction factorise to simplify	3			$\begin{array}{\|lcl} \hline \text { C } & \text { P2 } & \text { Q7 } \\ \text { D } & \text { P1 } & \\ \text { Q4b,c } & \\ \text { E } & \text { P1 } & \text { Q7 } \\ \text { F } & \text { P1 } & \text { Q5 } \\ \hline \end{array}$	
2	Quadratics completing the square	2		$\begin{aligned} & 2014 \mathrm{P} 1 \\ & \text { Q3 } \\ & \text { Spec. P1 } \\ & \text { Q9a } \end{aligned}$	D P1 Q1	
3	Scientific notation problem	3		$\begin{aligned} & \text { Spec. P2 } \\ & \text { Q2 } \end{aligned}$	A P 2 Q2 B P 2 Q2 E P 2 Q 1	
4	Circle - angle calculation from Area of a sector	4			$\begin{array}{lll} \hline \text { C } & \text { P2 } & \text { Q9 } \\ \text { E } & \text { P2 } \\ \text { Q12a } & \\ \hline \end{array}$	
5	Trig graph - from graph find equation of form $y=a \sin b x+c$	3		$\begin{aligned} & 2014 \text { P1 } \\ & \text { Q10 } \\ & \text { Spec. P2 } \\ & \text { Q10 } \end{aligned}$	$\begin{array}{llll} \hline \text { C } & \text { P1 } & \text { Q4 } \\ \text { E } & \text { P1 } & \text { Q5 } \end{array}$	
6	Converse of Pythagoras problem	4		$\begin{aligned} & 2014 \mathrm{P} 2 \\ & \text { Q6 } \end{aligned}$	F P2 Q9	
7	Simultaneous equations problem	5		$\begin{aligned} & 2014 \mathrm{P} 2 \\ & \text { Q3 } \\ & \text { Spec. P1 } \\ & \text { Q10 } \\ & \hline \end{aligned}$	$\begin{array}{lll} \hline \text { C } & \text { P2 } & \text { Q6 } \\ \text { D } & \text { P2 } & \text { Q5 } \\ \text { E } & \text { P1 } & \text { Q9 } \end{array}$	
8	Multiply out brackets (2 term by 3 term)	3		$\begin{aligned} & \text { Spec. P1 } \\ & \text { Q2 } \end{aligned}$	D P2 Q1	

Parent/Carer Signature

